Evaluating BIST Architectures for Low Power

نویسندگان

  • C. P. Ravikumar
  • N. Satya Prasad
چکیده

The "system-on-chip" revolution has posed a number of new challenges to the test engineers. We address the issue of high power dissipation during testing, which can reach levels that are beyond the safe upper limit associated with the chosen packaging technology. A study undertaken by Zorian reveals that test power can be as large as 200% or more in comparison to the normal power. In the test mode, input vectors are normally applied in an uncorrelated manner, leading to an increase in the average Hamming distance between two successive vectors. This implies a larger switching activity, and, for CMOS circuits, implies a larger power dissipation. In this paper, our attempt is to look at Built-in Self-Test architectures from the view point of power dissipation, fault-coverage, area, and test length. We report experimental results for a CORDIC chip. Our results indicate that BIST architectures differ significantly from one another in terms of power dissipation, giving the test designer an opportunity to address the problem of excessive heating during testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Transition-Generalized Linear Feedback Shift Register Based Test Pattern Generator Architecture for Built-in-Self-Test

Problem statement: In Built-In Self-Test (BIST), test patterns are generated and applied to the Circuit-Under-Test (CUT) by on-chip hardware; minimizing hardware overhead is a major concern of BIST implementation. In pseudorandom BIST architectures, the test patterns are generated in random nature by Linear Feedback Shift Registers. This normally requires more number of test patterns for testin...

متن کامل

Low Transition Test Pattern Generator Architecture for Mixed Mode Built-in-self-test (bist)

In Built-In Self-Test (BIST), test patterns are generated and applied to the circuit-under-test (CUT) by on-chip hardware; minimizing hardware overhead is a major concern of BIST implementation. In pseudorandom BIST architectures, the test patterns are generated in random nature by Linear Feedback Shift Registers (LFSR). Conventional LFSRs normally requires more number of test patterns for test...

متن کامل

مدل عملکردی تحلیلی FPGA برای پردازش با قابلیت پیکربندی مجدد

Optimizing FPGA architectures is one of the key challenges in digital design flow. Traditionally, FPGA designers make use of CAD tools for evaluating architectures in terms of the area, delay and power. Recently, analytical methods have been proposed to optimize the architectures faster and easier. A complete analytical power, area and delay model have received little attention to date. In addi...

متن کامل

A Modified Clock Scheme for a Low Power BIST Test Pattern Generator

In this paper, we present a new low power BIST test pattern generator that provides test vectors which can reduce the switching activity during test operation. The proposed low power/energy BIST technique is based on a modified clock scheme for the TPG and the clock tree feeding the TPG. Numerous advantages can be found in applying such a technique. The fault coverage and the test time are roug...

متن کامل

Low Power March Memory Test Algorithm for Static Random Access Memories (TECHNICAL NOTE)

Memories are most important building blocks in many digital systems. As the Integrated Circuits requirements are growing, the test circuitry must grow as well. There is a need for more efficient test techniques with low power and high speed. Many Memory Built in Self-Test techniques have been proposed to test memories. Compared with combinational and sequential circuits memory testing utilizes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998